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Abstract. Using a computational methodology, ac impedance spectra of macroscopic mixtures of conducting

and insulating hard spheres which have random or regular arrangements of the components are studied. These

simulations can be used to calculate the ac electrical properties of a multi-component composite using a personal

computer.

It is shown in this study that ac impedance spectra are sensitive functions of the ®lling fraction and the

geometrical arrangement of the components, and especially, the impedance spectra of the composite show the

abnormal arc originated from the isolated clusters in the composite. From the simulated impedance patterns of the

isolated clusters with various length, the abnormal arcs are shown to appear more distinctly when the elongated

clusters are arranged along the preferred current line.
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1. Introduction

A composite is de®ned as a material made up of two

or more different media, which are arranged, in a

regular or irregular pattern. It is well known that the

conductivity of electrical materials is strongly

affected by the atomistic mechanism (charge carrier

mobility and concentration, hopping rate etc.) and the

microstructure (grain size distribution, grain mor-

phology, porosity etc.). However, the effect of the

detailed geometrical arrangement of constituents on

the bulk properties of the composites is not known.

The theoretical and experimental analyses of the

conductivity of polycrystalline composites have been

mostly focused on the identi®cation of the underlying

atomistic mechanisms and microstructure effects.

This is due to the fact that one can hardly get an

analytic solution that includes the geometrical

arrangement effect. It is dif®cult to consider the

positions of all components in a composite because

they will change from sample to sample.

Recently, with the use of the modern frequency

analyzer that can do the fast and precise measure-

ments, impedance spectroscopy (IS) is gaining

popularity for studying the electrical properties of

composite materials. IS goes by various names,

including modulus spectroscopy, dielectric spectro-

scopy, and immittance spectroscopy. Macdonald [1]

gives a good overview, including many applications to

solid-state phenomena. It should be understood as

immittance, i.e., any form of the transfer function of

two-terminal systems: impedance Z, admittance

Y� Zÿ 1, modulus M� joC0Z and complex permit-

tivity Mÿ 1, where j� �������ÿ1
p

, o is angular frequency

(o� 2pf ) and C0 is the permittivity of free space. A

Nyquist plot (Z00 vs. Z0) of two RC parallel circuits

(R1C1, R2C2) connected in series, gives two semi-

circles with the diameters of R1 and R2 whose centers

lie on the Z0 axis at R1/2 and R1�R2/2. Impedance

data are often plotted either in Z00 vs. Z0, or in M00 vs.

M0 in order to get the higher resolution. In M00 vs. M0

plot, the centers of two semicircles are located at



1/(2C1) and 1=C1 � 1=�2C2�, respectively. In theory,

we can analyze more complex circuits in a similar

fashion, as long as the time constants (the RC

products of the subcircuits) are suf®ciently different

from each other to permit deconvolution of the

spectrum. When the system is not well de®ned,

however, a researcher resorts to the equivalent circuit

analysis, ®tting the data by trial and error to the

different electrical circuits [2]. In many cases, the

analogy rests on the assumptions that it is possible to

model the polycrystalline composite with a series-

parallel combination of linear passive elements.

The objective of this paper is to study the effects of

geometrical arrangement on the ac impedance spectra

of polycrystalline composites. The impedance spectra

were obtained by computer simulations of 2-D

electrical composites. The simulations were made

utilizing a modi®ed transfer matrix algorithm for the

triangular network. The simulation results were

compared with a series circuit model and

McLachlan's generalized effective medium theory

(GEMT) [3]. For the model of 2-D close packed hard

spheres, small spheres of a homogeneous phase are

assumed to be mixed with similar articles of a second

phase and the two types of crystalline spheres ®ll the

space in a close-packed pattern.

2. Methodology

We have carried out the numerical simulations for the

systems of close-packed mixture of hard spheres

(Fig. 1a), placing a sample between two ¯at parallel

plates of electrodes. The resistivity (r, O/sphere) and

the permittivity (e, F/sphere) are assigned as the

resistance and capacitance of one sphere, respectively.

For the simulation, the values of r1 and r2 are given as

109 [O/sphere] and 103 [O/sphere], respectively. Both

e1 and e2 are given as 8.854� 10ÿ 11 [F/sphere]. Two

kinds of spheres used in the simulations correspond to

two RC parallel circuits as shown in Fig. 1b. The

values of spheres were chosen to re¯ect the case

where the conductive particles were introduced into

the insulating matrix of the same permittivity.

As shown in Fig. 2a, the simulation system

corresponds to the triangular network-site percolation

problem. The lattice points correspond to the centers

of spheres. Each rectangle connecting the lattice

points represents the impedance between the centers

of neighboring spheres as shown in Fig. 2b. We used

the transfer-matrix algorithm to calculate the con-

ductivity of each triangular network of N� L. The

transfer-matrix algorithm calculates the resistance

value of new lattice from the known current-voltage

relation of old lattice when one column of resistors are

added. Old admittance matrix which contains current-

voltage relation at each lattice point is updated into

the new admittance matrix. The total conductivity is

calculated from the element of the inverted admit-

tance matrix. This algorithm, which was originally

developed by Derrida and coworkers [4] for the dc

resistance calculation of square network-bond perco-

lation problem, is modi®ed for the ac impedance value

of triangular network-site percolation problem in this

paper. The diagonal admittance matrix is newly

introduced for the triangular network, and all elements

of matrix are complex numbers for ac impedance

simulation. We used Marsaglia's algorithm [5] to

generate random numbers. The transfer-matrix algo-

rithm and Marsaglia's algorithm are very simple and

Fig. 1. (a) An example of the close packed hard spheres model of

N� 3 and L� 4, (b) the values of the resistance and capacitance

of one sphere used in this study.
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need less memory so that they make the ac impedance

simulation possible on the personal computer. In this

study, all simulations are made over a mesh of

30� 100 spheres by an IBM compatible personal

computer.

The following is the brief explanation of the

transfer-matrix method for the triangular lattice. The

matrix Alÿ 1 gives, by de®nition, the currents Ii as

functions of the potential Ui

I1

I2

���
IN�1

0BB@
1CCA � Alÿ1

U1

U2

���
UN�1

0BB@
1CCA �1�

In the transfer-matrix algorithm, the admittance

matrix Alÿ 1 is updated to a new matrix Al when

horizontal impedances hi, diagonal impedances di,

and oblique impedances vi are inserted. Three values

of the inserted resistors are determined by the types

of neighboring spheres as shown in Fig. 2b. Then, the

matrix Al has the recursion relation with Alÿ 1:

Al � �Alÿ1 � D�f1� H�Alÿ1 � D�gÿ1M � P

�2�
and the matrixes H, D, M and P are given:

H � hidi;j �3�

D �
 

1

diÿ1

!
dij ÿ

 
1

di

!
di�1; j �4�

M � di; j �
 

hi

diÿ1

!
di; j�1 �5�

P �
 

1

di

� 1

vi

� 1

viÿ1

!
di; j

ÿ
 

1

diÿ1

� 1

viÿ1

!
di; j�1

ÿ
 

1

vi

!
di�1; j �6�

Fig. 2. (a) The triangular lattice corresponding to the model and recursive construction of a strip by adding the horizontal hi, diagonal di

and oblique vi impedances. Black dots indicate the centers of spheres. (b) The hi, di and vi values between the centers of spheres, which are

denoted as the rectangular boxes in (a), are determined by the types of contacting spheres.
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Here; di; j is the Kronecker delta:

di; j �
0; i6=j

1; i=j

�
The formalism remains valid for i� 1 when one takes

h1� 0, 1/d0� 0 and 1/v0� 0. This recursive process

is iterated up to the end of lattice, L. Then, we can

aquire the total conductivity (stot):

stot � 2Aÿ1
L �1; 1�

ÿ �ÿ1
N=L �7�

Here, the total conductivity stot is normalized and

de®ned as the conductance of one sphere.

3. Results and Discussion

The impedance spectra are presented in M-plots

because M-plots have better resolution than Z-plots

when the difference of the time constants is due to the

difference of the resistance values. The frequency in

simulation ranges from 10ÿ 2 Hz to 102 MHz and

re¯ects the frequency range of many impedance

analyzers.

The simulated impedance spectra with completely-

random patterns of two spheres are given in Fig. 3.

Figure 4 shows the calculated impedance spectra of a

series circuit model and the generalized EMT

(GEMT) which are often used to analyze the electrical

components of ploycrystalline materials. The equa-

tions generating the impedance spectra are as follows:

When s1 and s2 are the conductivities of the basic

constituent 1 and 2, respectively, and p2 is the volume

fraction of the constituent 2, the series circuit model

gives the following equation:

sÿ1
tot � 1ÿ p2�sÿ1

1 � p2s
ÿ1
2

ÿ �8�

where stot is the real or complex conductivity of the

composite. McLachlan and coworkers have presented

a GEMT, which takes into account an effective

percolation threshold (peff ) and a critical exponent (t)
into Bruggeman's effective medium theory (BEMT)

formula [6]:

Fig. 3. (a) An example of completely-random patterns with

N� 30, L� 100. Here, p2 is about 0.35. (b) Simulated M-plots for

completely-random patterns at various p2.

Fig. 4. M-plots calculated by the analytical equations of (a) series

circuit model, and (b) GEMT with peff� 0.47 and t� 1.2.
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�1ÿ p2��s1=t
1 ÿ s1=t

tot �
s1=t

1 � 1ÿpeff

Peff

� �
s1=t

tot

� p2�s1=t
2 ÿ s1=t

tot �
s1=t

2 � 1ÿpeff

Peff

� �
s1=t

tot

� 0

�9�

The effective percolation threshold peff is generally

de®ned as the ®lling fraction at which a percolating

cluster connects the top to the bottom of the sample

for the ®rst time. In the real system, however, it was

dif®cult to determine whether the composite was

percolated, or not, by this de®nition. Thus, we

proposed the new de®nition of peff as the ®lling

fraction at which the variance of the properties of the

system had maximum values, and determined peff of

the present system (the triangular lattice with the size

of 30� 100) to be 0.47 in a previous study [7]. The

value of t is determined to be 1.2 which best ®ts the

impedance spectra of completely-random patterns.

The simulated ac impedance spectra of comple-

tely-random patterns (Fig. 3b) are similar to those of

the GEMT (Fig. 4b). The ac impedance of comple-

tely-random pattern is expected to be similar to

those of the GEMT since both patterns are based on

the con®guration of two interspersed spherical

components.

However, a few impedance shapes of random

patterns show a clear difference from the GEMT

patterns at ®lling fractions away (about

p2� 0.2� 0.4) from peff in a sense that they show

more overlapped semicircles. Figure 5 shows the

detailed ac impedance spectra of completely-random

patterns in the region p2� 0.1� 0.5. As shown in Fig.

5, the third semicircle with the peak frequency of o3,

which is about 10ÿ 1�o2, grows as the ®lling

fraction p2 increases. Thus, it is shown that the

apparent third semicircle appears for a two-compo-

nent system at certain compositions. The observation

of three semicircles for a two-component system is

not clear but may be explained as follows. The size of

the clusters composed of black spheres increases as p2

increases from 0 to peff, and some clusters span from

the bottom to the top of the sample at peff. The number

of isolated clusters, however, decreases as p2

approaches peff, and only one or a few clusters exist

at peff. The isolated clusters of very different size and

shape exist in the sample at ®lling fractions away from

peff. The new semicircle may appear in impedance

spectra due to these isolated clusters of different size

and shape. This interpretation is veri®ed in the

following simulations.

When the distribution of spheres has no-contact

random patterns as shown in Fig. 6a, ac impedance

spectra can be analyzed by a two-component series

circuit model as shown in Fig. 6b. In no-contact

random patterns, black spheres are distributed

Fig. 5. Simulated M-plots for the completely-random patterns of

N� 30, L� 100: The bold semicircles are for the arcs analyzed

by the equivalent circuit model. o1 and o2 are the peak angular

frequency (the inverse of time constant) for sphere 1 and sphere

2, respectively. o1/2p and o2/2p are about 2 Hz and 2� 106 Hz,

respectively. o3 is the peak angular frequency of the third

semicircle, and o3/2p is about 2� 105 Hz.
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randomly, but forbidden to contact each other, thus no

black clusters form. The frequencies at the apexes of

the semicircles are those expected from the semi-

circles representing white and black spheres, i.e.,

o1(� 1/R1C1) and o2(� 1/R2C2). The third semi-

circle is not observed although the ®lling fraction, p2

reaches as high as 0.26. When the ®lling fraction

increases further, the distribution loses randomness

since the number of sites, which may be occupied by

black spheres without contacting each other, is

limited. The distribution of black spheres needs an

ordered arrangement as shown in Fig. 6c in order to

get the higher ®lling fraction on the condition of no

contact between black spheres. The third semicircle is

not observed in Fig. 6d. These impedance spectra

which do not show the third semicircle can be

analyzed very well by the series circuit model (Fig.

4a).

When the branched clusters, which imitate the

isolated clusters formed in the completely-random

patterns, are arranged obliquely as shown in Fig. 7a,

the third semicircle (o3) appears clearly as shown in

Fig. 7b. From these observations, the third semicircle

seems to originate from the clusters formed in the

composite, and the morphology of the clusters seems

to play a major role in generating the third semicircle.

When the horizontal-clusters are introduced as

shown in Fig. 8a, the third semicircle is not observed

as shown in Fig. 8b. The ratio of two diameters of the

semicircles is equal to the ratio of two volume

fractions (p1� 0.818, p2� 0.182). So, this impedance

spectrum is analyzed nicely by the two-phase series

circuit model (Eq. (8) and Fig. 4a). However, the

overlapping third semicircle appears as shown in Fig.

9b when the oblique-clusters are introduced (Fig. 9a).

The diameter of the third semicircle decreases (Fig. 9b

and 9d) as the length of oblique-clusters decreases as

shown in Fig. 9a (23 spheres-long) and 9c (5 spheres-

long). For the very small clusters (two spheres form

one cluster as shown in Fig. 9e), the effects of clusters

are also very small as shown in Fig. 9f. If there are no

contacts between black spheres (Fig. 9g), impedance

spectra are well separated again into two semicircles

(hereafter, o1 and o2 semicircles) having peak

frequencies at o1 and o2 without showing the third

semicircle, as shown in Fig. 9h.

Fig. 6. (a) An example for no-contact random patterns where black spheres are randomly distributed but prohibited from contacting each

other (N� 30, L� 100). Here, p2 is about 0.26. (b) Simulated M-plots for no-contact random patterns. (c) Typical ordered distribution and

(d) simulated M-Plots for the ordered distribution (N� 30, L� 100). p2 is 0.335.
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The length of the oblique-clusters also affects the

diameter of o1 semicircle. The difference between the

diameter ratio and the ®lling fraction ratio increases as

the length of oblique-clusters increases. As shown in

Fig. 9b, the ®lling fraction of white spheres, estimated

by using the ratio of the diameter of o1 semicircle to

the entire o1o2o3 diameter, is only p1� 0.33

although the ®lling fraction is actually p1� 0.872.

These simulation results imply that the ®lling fraction

may be estimated incorrectly from the radius ratio of

semicircles in many experiments. Only for the

composite with no cluster (Fig. 6) or the horizontally

layered cluster (Fig. 8), the ®lling fractions of

components may be estimated directly from the

ratio of two diameters of the semicircles in the

impedance spectra.

The analysis of various patterns suggests that

the appearance of the third semicircle is due to the

elongated clusters oriented in the direction of the

preferred current line. The preferred current line is

de®ned, here, as the shortest current path between two

electrodes. In the present lattice, the shortest path

between two electrodes is the oblique direction.

However, in most real materials, the preferred current

line is perpendicular to the electrodes. Thus, it is

expected that the clusters arranged perpendicular to

the electrodes generate the clearer third semicircle in

real systems. The effects of the elongated clusters on

the ac impedance spectra shown in these simulatins

are also expected to be observed in real composites,

such as the ®lm with the included conducting whisker,

or the bulk composites with the included conducting

plates.

We now understand that the elongated clusters

generate the third semicircle as if there is another

component connected in series, in addition to the

known two components. It is necessary to explain why

the elongated clusters generate the third semicircle

with the distinctive time constant in the ac impedance

sepctra. The series equivalent circuit model assumes

the charge carriers passes through the regions of

different time constants sequentially. Therefore, the

explaination with the series equivalent circuit model

should assume that the charge carriers, in the pattern

including the elongated cluster arranged along the

preferred current line, should experience three regions

Fig. 7. (a) The branched clusters are distributed obliquely.

(b) Simulated M-Plots for the branched cluster pattern of p2 equal

to 0.2.

Fig. 8. (a) Ten black spheres are horizontally distributed.

(b) Simulated M-Plots for the horizontal distribution. Here, p2

is about 0.182.

Impedance Spectra for a 2-D Conductor-Insulator Composite by Computer Simulation 63



Fig. 9. The distribution patterns (a,c,e,g) which show black-sphere clusters, with various length arranged in oblique direction and the

resultant simulated modulus patterns (b,d,f,h) for the corresponding distribution patterns. The elongated clusters are (a) 23 spheres, (c) 5

spheres, (e) 2 spheres and (g) 1 sphere long. The dotted line shown in (b) is the curve ®tted by the Eq. 10 with p1� 0.344, p2� 0.14 and

p3� 0.516.

64 Han and Choi



of different time constants. Fig. 10 shows a portion of

Fig. 9a for clarity. When the charge carriers start to

¯ow downwards with the application of potential,

they go through a region of white spheres. This A-B

region of white spheres is represented as the time

constant 1/o1, or o1 semicircle. In the B-C region, the

charge carriers bend toward the included elongated

clusters of black spheres as shown in the Fig. 10,

which are much more conductive than the white

spheres. The B-C region inside the dotted line in

Fig. 10 resembles a new component with different

time constant, and is modeled by the parallel

combination of one black sphere and approximately

®ve white spheres. The parallel combination of

several R1C1 parallel circuits with one R2C2 parallel

circuit increases the time constant from 1/o2 to 1/o3.

Thus, the length of the black elongated clusters

changes mainly the diameter of the semicircle not the

time constant. When charge carriers move through the

elongated clusters in C-D region, they generate o2

semicircles because they are con®ned in the more

conductive black spheres. Region D-E and E-F are

expected to show similar effect of region B-C and A-

B, respectively, thus contributing to the generation of

o3 and o1 semicircles.

With the decreasing length of the elongated

clusters, the region affected by the bending current

is diminished and the region unaffected by this current

grows, as indicated by the shrinking o3 semicircle and

enlarging o1 semicircle, respectively, shown in Fig.

9d. and 9f. When M1, M2 and M3 are considered as

the three electrical components of the composite

with time constants, 1/o1 (�R1C1), 1/o2 (�R2C2)

and 1/o3 (�R3C3), respectively, the total modulus

of the series connection of three components is given

by:

Mtot � p1M � p2M2 � p3M3 �10�
Here, p1, p2 and p3 are the fractions of M1, M2 and M3

circuits, respectively. M3 is represented roughly as

the parallel combination of ®ve M1 circuits and one

M2 circuit. Since R14R2 and C1�C2, the time

constant of o3 semicircle is 6 times larger than that of

o2 semicircle. Thus, o2 and o3 semicircles overlap

in a modulus plot. When Fig. 9b is best ®tted

with Eq. (10), p1� 0.344, p2� 0.140 and

p3� 1ÿ p2ÿ p2� 0.516 are obtained. The best ®tting

curve is shown as the dotted line in Fig. 9b. Thus, the

distribution shown in Fig. 9a is seen by the charge

carriers as the series combination of 34.4% white

spheres, 14.0% black spheres and 51.6% new spheres

of intermediate time constant.

We have qualitatively shown that the appearance of

the third semicircle is due to the effect of current ¯ow

in the insulator-conductor composite. The current

distribution effect is pronounced when the elongated

clusters are arranged along the preferred current

direction. Although we have chosen the modulus (M0

vs. M00) plot to show the composite effect on the

impedance of a two phase mixture, a similar effect

may be shown in the impedance (Z0 vs. Z00) plot with

the properly adjusted values of the circuit parameters.

4. Conclusions

Impedance plots are useful in determining the

appropriate equivalent circuit and estimating the

values of the circuit parameters. Although the process

is straightforward in some cases, it is not obvious what

portion of the equivalent circuit corresponds to what

component in materials. These problems are settled by

various experimental methods for the given impe-

dance plot. However, until now the effect of

geometrical arrangement was hardly considered.

We have numerically simulated the ac impedance

spectra of two-dimensional N� L macroscopic

Fig. 10. Some portion of Fig. 9a pattern is shown to explain the

proposed equivalent circuit model. Arrows indicate the direction

of current ¯ows. The region inside the dotted line may be seen by

the charge carriers as the new component.
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mixtures of hard spheres, and compared the results

with the series circuit model and the effective medium

model. These simulations can be used to calculate the

ac electrical properties of multi-component compo-

sites using a personal computer. They enable us to

investigate the effects of geometrical arrangement for

both random and regular distributions of the material

components.

It is shown in this study, for the ®rst time, that the

impedance spectra of the two-component composites

may show three arcs due to the geometrical

arrangement effects in the vicinity of the effective

percolation threshold. It is also proved that the third

semicircle originates from the isolated clusters

arranged along the preferred current line. The effect

of the elongated clusters on the current distribution,

and thus on the generation of the third semicircle was

explained by a series of simulations using clusters of

variable length. Although the series circuit model is

widely used for the analysis of impedance of

polycrystalline materials to separate grain interior

and grain boundary conductivities, the interpretation

of impedance spectra for the multi-phase mixture may

be used with care.

Finally, it is emphasized that the effects of

geometrical arrangement must be seriously consid-

ered in the analysis of the electrical properties of

composites, especially when the system exhibits

percolation phenomena and the ®lling fraction is

near peff.
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